# Synthesis and Spectra of Some Asymmetric Trimethine Cyanine Dyes

### A. I. M. Koraiem, Z. H. Khalil & R. M. Abu El-Hamd

Chemistry Department, Aswan Faculty of Science, Aswan, Egypt

(Received 17 April 1989; accepted 30 June 1989)

#### ABSTRACT

New asymmetric trimethine cyanine dyes were prepared by condensation of 3- $\beta$ -acetanilidovinyl derivatives, with 2-methylpyridinium(quinolinium)-2-yl salts. Cyclo-condensation reaction of the dyes with urea gave new asymmetric biheterocyclic trimethine cyanines. The electronic absorption spectra of the dyes in the visible region is reported.

### 1 INTRODUCTION

Trimethine cyanine dyes have been described as being suitable as light-,<sup>1</sup> and super-photographic,<sup>2</sup> sensitisers for silver halide emulsions, as laser dyes,<sup>3</sup> and as the sensitising panchromatic layers of motion pictures.<sup>4</sup> They can also be used for producing offset printing plates.<sup>5</sup>

The new asymmetric trimethine cyanines (3a-3e, 5a-5d, 7 and 9) were prepared and a study of their spectral behaviour was made.

### 2 RESULTS AND DISCUSSION

A selected 4-benzylideno-2-ethyl-3-methyl-1-phenylpyrazolium salt (1a-1d) was reacted with diphenyl formamidine in equimolar amounts in the presence of acetic anhydride to give the corresponding 3- $\beta$ -acetanilidovinyl derivatives (2a-2d). Further reaction of 2a-2d with heterocyclic quaternary salts containing an active methyl group, e.g. 1-ethylpyridinium

289

Dyes and Pigments 0143-7208/90/\$03-50 © 1990 Elsevier Science Publishers Ltd, England. Printed in Great Britain

Scheme 1

(quinolinium)-2-yl salts, gave the corresponding asymmetric trimethine cyanines **3a**–**3e**. The reaction proceeds smoothly due to the high reactivity of 4-benzylideno-2-ethyl-3-methyl-1-phenylpyrazoline (Scheme 1).

The asymmetric trimethine cyanines  $3\mathbf{a}-3\mathbf{e}$  were then cyclo-condensed with urea in the presence of ethanol containing concentrated hydrochloric acid to yield the corresponding asymmetric pyrazolo[4,5-d]pyrimidine trimethine cyanine dyes ( $5\mathbf{a}-5\mathbf{d}$ ). These were also synthesised via  $3-\beta$ -acetanilidovinylpyrazolo[4,5-d]pyrimidine-6(5H)-one ( $4\mathbf{a}-4\mathbf{d}$ ) followed by further reaction with an 1-ethyl-2-methylquinolinium-2-yl salt.

In the same manner, 2-methyl-3-ethyloxazolo[4,5-d]pyrimidinium salt (6) and/or 2-ethyl-3-methylpyrazolo[4,5-d]pyrimidine (8) were used in the synthesis of other asymmetric bis-heterocyclic trimethine cyanine dyes, 7 and 9 (Scheme 1).

The structures of the compounds were established by elemental analyses, IR and <sup>1</sup>H-NMR spectral data; relevant data are shown in Tables 1–6. The dyes were readily soluble in non-polar solvents giving orange to intense violet solutions with green or intense blue fluorescence, depending upon the solvent used. In polar solvents, they gave orange or violet solutions with a green fluorescence. Their ethanolic solutions give a yellow colour in acidic medium, turning violet on basification with strong alkali.

The electronic absorption spectra of the asymmetric trimethine cyanines 3a-3e in 95% ethanol showed hypsochromic or bathochromic shifts depending upon the nature of the heterocyclic quaternary salt A and of the benzylidene substituents X. Thus, the trimethine cyanine 3d (A = C<sub>6</sub>H<sub>4</sub>-2-yl salt) showed a significant red shift compared with 3e (A = H-2-yl salt), both

TABLE 1
Characterisation of  $3\beta$ -Acetanilidovinyl-4-arylidino-2-ethiodide-1-phenylpyrazol-5-one (2a-2d)

| Compound   | <i>M.p.</i> (° <i>C</i> ) | Yield<br>(%) | Molecular<br>formula<br>(Mol. wt.)                                       | Colour of crystalline products | Analysi         | $s (\%)$ : $\frac{C}{(F)}$ | Calcd<br>Cound) |
|------------|---------------------------|--------------|--------------------------------------------------------------------------|--------------------------------|-----------------|----------------------------|-----------------|
|            |                           |              | (112011 1111)                                                            | p. ouncis                      | С               | Н                          | N               |
| 2a         | 122                       | 35           | C <sub>28</sub> H <sub>26</sub> N <sub>3</sub> O <sub>2</sub> I<br>(563) | Brown                          | 59·7<br>(59·3)  | 4·6<br>(4·2)               | 7·5<br>(7·4)    |
| 2b         | 185                       | 29           | $C_{29}H_{28}N_3O_3I$ (593)                                              | Deep brown                     | 58·7<br>(58·3)  | (4·2)<br>4·7<br>(4·4)      | 7·1<br>(7·1)    |
| <b>2</b> e | 145                       | 31           | $C_{28}H_{26}N_3O_3I$ (579)                                              | Brown-red                      | 58·0<br>(57·9)  | 4·5<br>(4·7)               | 7·25<br>(7·2)   |
| 2d         | 107                       | 33           | $C_{28}H_{26}N_3O_3I$ (579)                                              | Brown                          | 58·0<br>(58·15) | 4·5<br>(4·65)              | 7·25<br>(7·3)   |

TABLE 2

Characterisation of Asymmetric Trimethine Cvanine Dives (3a-3e)

| Compound $M.p.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M.p.<br>⊙C) | Yield (%) | Molecular                                         | Colour of      | Analy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Analysis (%): Calcd | alcd    | Absorpt | Absorption spectra |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|---------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------|---------|--------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3           | (a / )    | (Mol. wt)                                         | erystalithe    | The state of the s | (F0                 | (Found) | 7       | £01 × 3            |
| And the state of t |             |           |                                                   |                | Ċ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Н                   | N       | (nn)    | $(m^{-1}cm^2)$     |
| За                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 158         | 53        | C <sub>32</sub> H <sub>30</sub> N <sub>3</sub> OI | Intense violet | 64·1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5-0                 | 7.0     | 480     | 12480              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           | (266)                                             |                | (64·1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (5.05)              | (7.0)   | 512     | 13 920             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |         | 558     | 14 280             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |         | 585sh   | 12160              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |         | 695     | 3 120              |
| <b>3</b> 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 205         | 73        | $C_{33}H_{32}N_3O_2I$                             | Bluish violet  | 63.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.1                 | 4.9     | 520     | 0966               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           | (629)                                             |                | (65.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (5·1)               | (6.7)   | 260     | 13 120             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |         | 695     | 1 400              |
| સ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 210         | 89        | $C_{32}H_{30}N_3O_2I$                             | Violet         | 62.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.9                 | 8.9     | 478sh   | 15 520             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |         | 506     | 16800              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           | (615)                                             |                | (62.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (4.9)               | (8.9)   | 553     | 11 680             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |         | 069     | 1 920              |
| æ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 180         | 62        | $C_{32}H_{30}N_3O_2I$                             | Violet         | 62.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.9                 | 8.9     | 412sh   | 12 720             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |         | 439     | 13 480             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           | (615)                                             |                | (62.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (4.9)               | (6.85)  | 480     | 12800              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |         | 510     | 14 040             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |         | 555     | 13 280             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |         | 069     | 1 840              |
| ક્ષ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 162         | 43        | $C_{28}H_{28}N_3O_2I$                             | Brown          | 59.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5-0                 | 7.4     | 455     | 11 720             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           | (565)                                             |                | (59.45)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (2:0)               | (7.4)   |         |                    |

| Compound  | <i>M.p.</i> (° <i>C</i> ) | Yield<br>(%) | Molecular<br>formula<br>(Mol. wt)                                        | Colour of crystalline product | Analys         |               | Calcd<br>Found) |
|-----------|---------------------------|--------------|--------------------------------------------------------------------------|-------------------------------|----------------|---------------|-----------------|
|           |                           |              | (MOL WI)                                                                 | ргоаист                       | C              | Н             | N               |
| <b>4a</b> | 110                       | 28           | C <sub>23</sub> H <sub>24</sub> N <sub>5</sub> O <sub>2</sub> I<br>(529) | Brown                         | 52·2<br>(52·2) | 4·5<br>(4·5)  | 13·2<br>(13·05) |
| 4b        | 120                       | 33           | $C_{24}H_{26}N_5O_3I$ (559)                                              | Red-brown                     | 51·5<br>(51·6) | 4·65<br>(4·5) | 12·5<br>(12·55) |
| 4c        | 135                       | 25           | $C_{23}H_{23}N_6O_4I$ (574)                                              | Deep brown                    | 48·1<br>(48·2) | 4·0<br>(3·9)  | 14·6<br>(14·6)  |
| 4d        | 105                       | 35           | C <sub>30</sub> H <sub>30</sub> N <sub>5</sub> O <sub>3</sub> I<br>(635) | Deep brown                    | 56·7<br>(56·8) | 4·7<br>(4·7)  | 11·0<br>(11·1)  |

TABLE 3 Characterisation of  $3\beta$ -Acetanilidovinyl Pyrazolopyrimidine Moieties (4a-4d)

dyes having the same benzylidene substituent (X = o-OH). Where X = p-OCH<sub>3</sub> (compound **3b**) a small red shift of 2-8 nm occurs relative to the unsubstituted analogue where X = H (**3a**).

Similarly, the absorption bands of the bis-heterocyclic trimethine cyanines (5a-5d, 7, 9) showed hypsochromic or bathochromic shifts depending on the nature of the substituent X, and on the nature of the bis-heterocyclic system (Tables 4 and 6). Compound 9, which combines the unsaturated pyrimidine ring with the N-phenylpyrazole ring, shows an increase in the number of absorption bands relative to the saturated pyrimidine 5d (Tables 4 and 6). On the other hand, replacing the parent pyrazoline by the oxazole moiety in the oxazolopyrimidine trimethine cyanine 7 gives an increase in the number of absorption bands accompanied by red shifts of 2-134 nm with increase in band intensity. This may be attributed to the presence of the oxazole nucleus, which facilitates the CT interaction between the N-ethyloxazole residue and the nitrogen atom of the quinolinium salt (Table 6).

Compound 9, in aqueous universal buffers showed bathochromic or hypsochromic shifts respectively in alkaline or acidic medium. The bathochromic shift in alkali is mainly due to the relatively increased negative charge density of the N-ethylpyrazolo[4,5-d]pyrimidine nucleus. The hypsochromic shift in acidic media is due to protonation of the pyrazolo[4,5-d]pyrimidine residue, thus decreasing CT interaction. As the pH of the medium increases, the pyrazolo[4,5-d]pyrimidine reactive becomes deprotonated, facilitating the CT interaction from the free base (Fig. 1). From a plot of the absorbance of compound 9 at  $\lambda_{\text{max}}$  572 nm against pH (Fig. 2), p $K_{\text{a}}$  values of 3-8 and 6-7 were derived.

TABLE 4
Characterization of Asymmetric Bis-heterocyclic Trimethine Cyanines (5a-5d)

| Compound M.p. | M.p. | Yield (%) | Molecular             | Colour of  | Analys | Analysis (%): Calcd | cq     | Absorpt | Absorption spectra |
|---------------|------|-----------|-----------------------|------------|--------|---------------------|--------|---------|--------------------|
|               |      | (0/)      | Journal att           | product    |        | (rou                | na)    |         | 103                |
|               |      |           | (1101: 141)           | p) outer t | C      | Н                   | N      | (mm)    | $(m^{-1} cm^2)$    |
| 5a            | 210  | 31        | C27H28N5OI            | Violet     | 57.35  | 5.0                 | 12.4   | 475sh   | 0089               |
|               |      |           | (595)                 |            | (57.6) | (4.9)               | (12.3) | 513     | 7 200              |
|               |      |           |                       |            |        |                     |        | 256     | 7 520              |
| <b>3</b> 2    | 218  | 51        | C28H30N5O2I           | Violet     | 56.5   | 5.0                 | 9.4    | 475sh   | 6840               |
|               |      |           | (565)                 |            | (9.95) | (5.0)               | (9.4)  | 517     | 8 720              |
|               |      |           |                       |            |        |                     |        | 228     | 0966               |
| જ             | 208  | 74        | $C_{27}H_{27}N_6O_3I$ | Violet     | 53.1   | 4.4                 | 13.8   | 475sh   | 0089               |
|               |      |           | (010)                 |            | (53-2) | (4.6)               | (13-6) | 513     | 8 000              |
|               |      |           |                       |            |        |                     |        | 260     | 8 120              |
|               |      |           |                       |            |        |                     |        | 590sh   | 1 280              |
| Z             | 180  | 92        | $C_{34}H_{34}N_5O_2I$ | Violet     | 8.09   | 5.1                 | 10.4   | 480     | 13 600             |
|               |      |           | (671)                 |            | (61.0) | (4·8)               | (10.4) | 504     | 14 400             |
|               |      |           |                       |            |        |                     |        | 209     | 4 400              |
|               |      |           |                       |            |        |                     |        | 069     | 2000               |

|                  | TABLE 5                     |
|------------------|-----------------------------|
| Characterisation | of Quaternary Salts (6a-6e) |

| Compound   | М.р.<br>(°С) | Yield<br>(%) | Molecular<br>formula                                       | Colour of crystalline | Analys          | is (%): (    | Calcd<br>Found) |
|------------|--------------|--------------|------------------------------------------------------------|-----------------------|-----------------|--------------|-----------------|
|            |              |              | (Mol. wt)                                                  | products –            | С               | Н            | N               |
| 6a         | 165          | 53           | C <sub>14</sub> H <sub>17</sub> N <sub>4</sub> OI<br>(384) | Brown                 | 43·75<br>(43·7) | 4·4<br>(4·6) | 14·6<br>(14·3)  |
| 6 <b>b</b> | 170          | 45           | $C_{15}H_{19}N_4O_2I$ (414)                                | Brown                 | 43·5<br>(43·4)  | 4·6<br>(4·4) | 13·5<br>(13·5)  |
| 6c         | 180          | 34           | $C_{14}H_{16}N_5O_3I$ (429)                                | Brown                 | 39·2<br>(39·0)  | 3·7<br>(3·8) | 16·3<br>(16·3)  |
| 6d         | 155          | 37           | $C_{21}H_{23}N_4O_2I$ (490)                                | Orange-brown          | 51·4<br>(51·3)  | 4·7<br>(4·8) | 11.4            |
| 6e         | 203          | 61           | $C_{14}H_{16}N_3O_2I$ (385)                                | Yellowish-green       | 43·6<br>(43·6)  | 4·2<br>(4·0) | 10·9<br>(11·0)  |

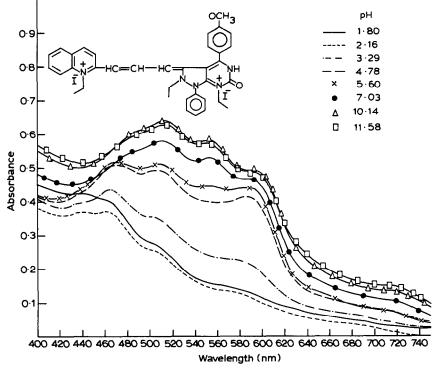



Fig. 1. Electronic absorption spectra of compound  $9.1 \times 10^{-4}$  g/mole in aqueous universal buffers.

TABLE 6
Characterisation of Asymmetric Bis-heterocyclic Trimethine Cyanines (7,9)

| Compound M.p. | M.p. | Yield | Molecular             | Colour of      | Analy   | Analysis (%): Calcd | led    | Absorpt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Absorption spectra        |
|---------------|------|-------|-----------------------|----------------|---------|---------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|               | 2    | (0/)  | Jornaud<br>(Mol vii)  | crystaume      |         | (F0                 | una)   | Commence of the commence of th | , , 103                   |
|               |      |       | (MOL. WI)             | prouder        | 2       | Н                   | Н      | (mu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $(m^{-1}cm^2)$            |
| 7             | 168  | 09    | $C_{27}H_{27}N_4O_2I$ | Bluish-violet  | 57.2    | 4.8                 | 6.6    | 477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9 400                     |
|               |      |       | (566)                 |                | (57-4)  | (4.6)               | (6.6)  | 560<br>600sh<br>660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15 490<br>13 600<br>4 280 |
|               |      |       |                       |                |         |                     |        | 069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 240                     |
| 6             | 157  | 55    | $C_{34}H_{32}N_5O_2I$ | Intense violet | 61.0    | 4.8                 | 10.5   | 480<br>510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 000                    |
|               |      |       | (699)                 |                | (60-85) | (4·7)               | (10.4) | 557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9 520                     |
|               |      |       |                       |                |         |                     |        | 658sh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2480                      |
|               |      |       |                       |                |         |                     |        | 069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 160                     |

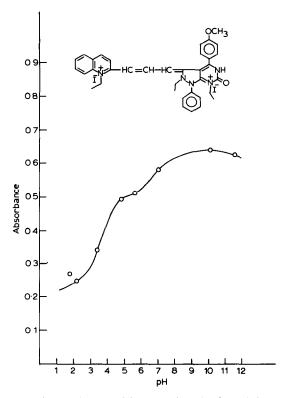



Fig. 2. The variation of absorbance with pH values in  $\lambda_{max}$  512 nm for compound 9,  $1 \times 10^{-4}$  g/mole.

### 3 EXPERIMENTAL

#### 3.1 General

All melting points are uncorrected. The IR spectra were determined with a Perkin–Elmer infrared 127B spectrophotometer. The visible absorption spectra were recorded on a Shimadzu UV-Vis recording spectrophotometer UV-240. The <sup>1</sup>H-NMR spectra were recorded on an EM-390 90 MHz NMR spectrometer.

4-Benzylideno-3-methyl-1-phenylpyrazolinium-2-yl salts<sup>7</sup> (1a-1d) and 3(2)-methylpyrazolo/oxazolo[4,5-d]pyramidine-6(5H)-one-2-(3)-ethiodides (6,8) were prepared on the basis of known methods.<sup>8</sup>

For spectra at different pH, an accurate volume of  $10^{-3}$  M ethanol solution of the dye 9 was added to 5 ml of buffer solution, the modified buffer series being prepared as described previously.<sup>9</sup>

## 3.2 Synthesis of $3\beta$ -acetanilidovinyl-4-arylidino-2-ethiodide-1-phenylpyrazol-5-one (2a-2d)

A mixture of the appropriate 4-benzylideno-1-phenyl-3-methyl-pyrazolone-2-ethiodide (1a-1d, 0·01 mol) and diphenylformamidine (0·01 mol) was refluxed in Ac<sub>2</sub>O (30 ml) for 1·5 h. The reaction liquor was concentrated, cooled and the precipitated products were collected, washed with methanol and crystallised from acetic acid to give 2a-2d. Relevant data are given in Table 1.

## 3.3 Synthesis of 4-benzylideno-2-ethyl-1-phenylpyrazol-5-one-3(2)-trimethine cyanines (3a-3e)

Equimolar ratios (0·01 mol) of **2a–2d** and the appropriate methyl quaternary salts ( $\alpha$ -picoline and quinaldine ethiodides) were dissolved in ethanol to which piperidine (2–5 drops) was added. The reaction was refluxed for 2 h, filtered hot, concentrated, the filtrate acidified with acetic acid, diluted with water and the precipitated products collected, washed with aqueous ethanol and crystallised from chloroform to give **3a–3e**. The results are summarised in Table 2. <sup>1</sup>H-NMR (CDCl<sub>3</sub>) for **3a** ( $\delta$ , ppm) 7·2–6·3 (m, 18H, arom. + heter. +  $\alpha$ ,  $\gamma$ -H of polymethine), 3·8 (q, 2H, CH<sub>2</sub> joined to immonium centre), 2·6 (t, 3H, CH<sub>3</sub>I), 2·3 (q, 2H, CH<sub>2</sub> joined to nitrogen), 1·6 (s, 1H, =CH benzylidene), 1·3 (t, 3H, CH<sub>3</sub> joined to CH<sub>2</sub>N) and 6·2 (t, 1H, B—H of polymethine).

### 3.4 Synthesis of 3-\beta-acetanilidovinylpyrazolopyrimidine derivatives (4a-4d)

These compounds were prepared in a similar manner to that described above using the 3-methyl-1-ethyliodide-pyrazolo[4,5-d]pyrimidine derivative 6 instead of 1a-1d. The results are listed in Table 3.

### 3.5 Synthesis of asymmetric bis-heterocyclic trimethine cyanine dyes (5a-5d)

These compounds were prepared via two routes.

### Method A

An alcoholic solution (10 ml) of 3a-3e (0·02 mol) was refluxed with 2 g of urea and concentrated hydrochloric acid (20 ml) for 8-10 h. The reaction mixture was filtered hot and allowed to cool. The products which precipitated after neutralising with 5M NaOH were filtered, washed several times with water and crystallised from methanol. The results are listed in Table 4

### Method

Equimolar ratios (0.01 mol) of **4a-4d** and the appropriate 1-ethyl-2-methylquinolinium-2-yl salts were dissolved in ethanol to which piperidine (2-5 drops) was added. The reaction mixture was refluxed for 2 h, filtered hot and concentrated. The filtrate was acidified with acetic acid, diluted with water and the precipitated products were collected, washed with aqueous ethanol and crystallised from methanol to give the same products as Method A,

IR  $(v_{\text{max}}^{\text{KBr}}, \text{ cm}^{-1})$  for (**5a**):  $3000-2900 \,\text{cm}^{-1}$  ( $\nu$  EtI),  $3500 \,\text{cm}^{-1}$  ( $\nu$  NH),  $1600 \,\text{cm}^{-1}$  ( $\nu$  C=C),  $1380 \,\text{cm}^{-1}$  ( $\nu$  CH<sub>3</sub>) and  $1700 \,\text{cm}^{-1}$  ( $\nu$  C=O of pyrimidinone).

### 3.6 Synthesis of bis-heterocyclic trimethine cyanines of types 7 and 9

In a similar manner, the oxazolo [4,5-d] pyrimidine trimethine cyanine 7 and the unsaturated pyrazolo [4,5-d] pyrimidine trimethine cyanine 9 were prepared. The results are listed in Table 6.

<sup>1</sup>H-NMR (CDCl<sub>3</sub>) for **9** (δ, ppm) 7·0–6·3 (m, 16H, arom. + heter. + αH), 1·1 (t, 3H, CH<sub>3</sub>), 5·8 (s, 1H, B—H), 6·2 (d, 1H,  $\gamma$ —H), 2·0 (s, 3H, p-OCH<sub>3</sub>), 2·3 (q, 2H, CH<sub>2</sub>), 2·5 (t, 3H, CH<sub>3</sub>), 3·5 (q, 2H, , CH<sub>2</sub>I), 5·9 (s, 1H, OH enolic), and 8·4 (s, 1H, NH exchangeable with D<sub>2</sub>O).

### **REFERENCES**

- Mitsubishi, Paper Mills Ltd, German Offen. 2734 335 (1978); Chem Abstr. 88 (1978) 161442c.
- Konishiroku Photo Industry Ltd, German Offen 2 600 968 (1976); Chem. Abstr., 86 (1977) 49175a.
- 3. Dyadyusha, G. G., Zubarovskii, V. M., Moreiko, O. V., Przhonskaya, O. V., Sych, E. D., Tikhonov, E. A. & Khodot, G. P., USSR Patent 568318 (1978); Appln 2157563 (1975); Chem. Abstr., 90 (1979) 46509j.
- Moskalenko, Z. L., Kudryavskaya, N. V., Grechko, M. K., Timofeeva, R. V. & Tarasenko, I. P., USSR Patent 430747 (1978); Appln 1737698 (1977); Chem. Abstr., 90 (1979) 130621.
- 5. Mitsubishi Paper Mills Ltd, US Patent 4134769 (1979); Chem. Abstr., **90** (1979) 213240y.
- 6. Scheinmann, F., Nuclear Magnetic Resonance and Infrared Spectroscopy, Vol. 1. Viewag and Sohn GmbH, Braunschweig, Austria, 1970, pp. 41–70.
- 7. Abu El-Hamed, R. M., MSc thesis, Assiut University, 1984.
- 8. Sammour, A., Selim, M. I. B., Nour El-Deen, M. M. & Abd El-Halim, M., *UAR J. Chem.*, **13**(1) (1970) 7.
- 9. Britton, H. T. S., *Hydrogen Ions*, 4th edn. Chapman and Hall, London, 1952, p. 313.